249 research outputs found

    Discovering extremely compact and metal-poor, star-forming dwarf galaxies out to z ∼ 0.9 in the VIMOS Ultra-Deep Survey

    Get PDF
    We report the discovery of 31 low-luminosity (−14.5 ≳ M_(AB)(B) ≳ −18.8), extreme emission line galaxies (EELGs) at 0.2 ≲ z ≲ 0.9 identified by their unusually high rest-frame equivalent widths (100 ≤ EW[O iii] ≤ 1700 Å) as part of the VIMOS Ultra Deep Survey (VUDS). VIMOS optical spectra of unprecedented sensitivity (I_(AB) ~ 25 mag) along with multiwavelength photometry and HST imaging are used to investigate spectrophotometric properties of this unique sample and to explore, for the first time, the very low stellar mass end (M* ≲ 10^8M_⊙) of the luminosity-metallicity (LZR) and mass-metallicity (MZR) relations at z < 1. Characterized by their extreme compactness (R_50 < 1 kpc), low stellar mass and enhanced specific star formation rates (sSFR = SFR/M_* ~ 10^(-9)−10^(-7) yr^(-1)), the VUDS EELGs are blue dwarf galaxies likely experiencing the first stages of a vigorous galaxy-wide starburst. Using T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are low-metallicity (7.5 ≲ 12 + log  (O/H) ≲ 8.3) galaxies with high ionization conditions (log (q_(ion)) ≳ 8 cm s^(-1)), including at least three EELGs showing Heiiλ 4686 Å emission and four extremely metal-poor (≲10% solar) galaxies. The LZR and MZR followed by VUDS EELGs show relatively large scatter, being broadly consistent with the extrapolation toward low luminosity and mass from previous studies at similar redshift. However, we find evidence that galaxies with younger and more vigorous star formation – as characterized by their larger EWs, ionization and sSFR – tend to be more metal poor at a given stellar mass

    A young stellar environment for the superluminous supernova PTF12dam

    Full text link
    The progenitors of super luminous supernovae (SLSNe) are still a mystery. Hydrogen-poor SLSN hosts are often highly star-forming dwarf galaxies and the majority belongs to the class of extreme emission line galaxies hosting young and highly star-forming stellar populations. Here we present a resolved long-slit study of the host of the hydrogen-poor SLSN PTF12dam probing the kpc environment of the SN site to determine the age of the progenitor. The galaxy is a "tadpole" with uniform properties and the SN occurred in a star-forming region in the head of the tadpole. The galaxy experienced a recent star-burst superimposed on an underlying old stellar population. We measure a very young stellar population at the SN site with an age of ~3 Myr and a metallicity of 12+log(O/H)=8.0 at the SN site but do not observe any WR features. The progenitor of PTF12dam must have been a massive star of at least 60 M_solar and one of the first stars exploding as a SN in this extremely young starburst.Comment: submitted to MNRAS letters. 5 pages, 3 figures, supplementary material: 2 figures, 2 table

    The environs of the H II region Gum 31

    Get PDF
    Aims. We analyze the distribution of the interstellar matter in the environs of the Hn region Gum 31, excited by the open cluster NGC 3324, located in the complex Carina region, with the aim of investigating the action of the massive stars on the surrounding neutral material. Methods. We use neutral hydrogen 21-cm line data, radio continuum images at 0.843, 2.4 and 4.9 GHz, 12CO(1-0) observations, and IRAS and MSX infrared data. Results. Adopting a distance of 3 kpc for the Hn region and the ionizing cluster, we derived an electron density of 33± 3 cm-3 and an ionized mass of (3.3 ±1.1) × 103 M⊙ based on the radio continuum data at 4.9 GHz. The Hl 21-cm line images revealed an Hl shell surrounding the Hn region. The Hl structure is 10.0 ±1.7 pc in radius, has a neutral mass of 1500 ±500 M⊙, and is expanding at 11 km s-1. The associated molecular gas amounts to (1.1 ±0.5) × 105 M⊙, being its volume density of about 350 cm-3. This molecular shell could represent the remains of the cloud where the young open cluster NGC 3324 was born or could have originated by the shock front associated with the Hn region. The difference between the ambient density and the electron density of the Hn region suggests that the Hn region is expanding. The distributions of the ionized and molecular material, along with that of the emission in the MSX band A, suggest that a photodissociation region has developed at the interface between the ionized and molecular gas. The copious UV photon flux from the early type stars in NGC 3324 keeps the Hn region ionized. The characteristics of a relatively large number of the IRAS, MSX, and 2MASS point sources projected onto the molecular envelope are compatible with protostellar candidates, showing the presence of active star forming regions. Very probably, the expansion of the Hn region has triggered stellar formation in the molecular shell.Instituto Argentino de RadioastronomíaInstituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica

    The star formation history and metal content of the "Green Peas". New detailed GTC-OSIRIS spectrophotometry of three galaxies

    Full text link
    We present deep broad-band imaging and long-slit spectroscopy of three compact, low-mass starburst galaxies at redshift z\sim0.2-0.3, also referred to as Green Peas (GP). We measure physical properties of the ionized gas and derive abundances for several species with high precision. We find that the three GPs display relatively low extinction, low oxygen abundances, and remarkably high N/O ratios We also report on the detection of clear signatures of Wolf-Rayet (WR) stars in these galaxies. We carry out a pilot spectral synthesis study using a combination of both population and evolutionary synthesis models. Their outputs are in qualitative agreement, strongly suggesting a formation history dominated by starbursts. In agreement with the presence of WR stars, these models show that these GPs currently undergo a major starburst producing between ~4% and ~20% of their stellar mass. However, as models imply, they are old galaxies having had formed most of their stellar mass several Gyr ago. The presence of old stars has been spectroscopically verified in one of the galaxies by the detection of Mg I 5167, 5173 absorption line. Additionally, we perform a surface photometry study based on HST data, that indicates that the three galaxies posses an exponential low-surface brightness envelope. If due to stellar emission, the latter is structurally compatible to the evolved hosts of luminous BCD/HII galaxies, suggesting that GPs are identifiable with major episodes in the assembly history of local BCDs. These conclusions highlight the importance of these objects as laboratories for studying galaxy evolution at late cosmic epochs.Comment: 30 pages, 9 figures and 7 tables. Accepted for publication in Ap

    An extreme [OIII] emitter at z=3.2z=3.2: a low metallicity Lyman continuum source

    Get PDF
    [Abridged] We investigate the physical properties of a Lyman continuum emitter candidate at z=3.212z=3.212 with photometric coverage from UU to MIPS 24μ\mum band and VIMOS/VLT and MOSFIRE/Keck spectroscopy. Investigation of the UV spectrum confirms a direct spectroscopic detection of the Lyman continuum emission with S/N>5S/N>5. Non-zero Lyα\alpha flux at the systemic redshift and high Lyman-α\alpha escape fraction suggest a low HI column density. The weak C and Si low-ionization absorption lines are also consistent with a low covering fraction along the line of sight. The [OIII]λλ4959,5007+Hβ\lambda\lambda4959,5007+\mathrm{H}\beta equivalent width is one of the largest reported for a galaxy at z>3z>3 (EW([OIII]λλ4959,5007+Hβ)1600A˚\mathrm{EW}([\mathrm{OIII}]\lambda\lambda4959,5007+\mathrm{H}\beta) \simeq 1600\AA, rest-frame) and the NIR spectrum shows that this is mainly due to an extremely strong [OIII] emission. The large observed [OIII]/[OII] ratio (>10>10) and high ionization parameter are consistent with prediction from photoionization models in case of a density-bounded nebula scenario. Furthermore, the EW([OIII]λλ4959,5007+Hβ)\mathrm{EW}([\mathrm{OIII}]\lambda\lambda4959,5007+\mathrm{H}\beta) is comparable to recent measurements reported at z79z\sim7-9, in the reionization epoch. We also investigate the possibility of an AGN contribution to explain the ionizing emission but most of the AGN identification diagnostics suggest that stellar emission dominates instead. This source is currently the first high-zz example of a Lyman continuum emitter exhibiting indirect and direct evidences of a Lyman continuum leakage and having physical properties consistent with theoretical expectation from Lyman continuum emission from a density-bounded nebula.Comment: 14 pages, 11 figures, accepted for publication in A&A. Minor modifications, Figure 2 updated, Figure 9 adde

    Search for Blue Compact Dwarf Galaxies During Quiescence

    Full text link
    Blue Compact Dwarf (BCD) galaxies are metal poor systems going through a major starburst that cannot last for long. We have identified galaxies which may be BCDs during quiescence (QBCD), i.e., before the characteristic starburst sets in or when it has faded away. These QBCD galaxies are assumed to be like the BCD host galaxies. The SDSS/DR6 database provides ~21500 QBCD candidates. We also select from SDSS/DR6 a complete sample of BCD galaxies to serve as reference. The properties of these two galaxy sets have been computed and compared. The QBCD candidates are thirty times more abundant than the BCDs, with their luminosity functions being very similar except for the scaling factor, and the expected luminosity dimming associated with the end of the starburst. QBCDs are redder than BCDs, and they have larger HII region based oxygen abundance. QBCDs also have lower surface brightness. The BCD candidates turn out to be the QBCD candidates with the largest specific star formation rate (actually, with the largest H_alpha equivalent width). One out of each three dwarf galaxies in the local universe may be a QBCD. The properties of the selected BCDs and QBCDs are consistent with a single sequence in galactic evolution, with the quiescent phase lasting thirty times longer than the starburst phase. The resulting time-averaged star formation rate is low enough to allow this cadence of BCD -- QBCD phases during the Hubble time.Comment: Accepted for publication in ApJ. 17 pages. 13 Fig

    Extremely Metal-Poor Galaxies: The HI Content

    Full text link
    Extremely metal-poor (XMP) galaxies are chemically, and possibly dynamically, primordial objects in the local Universe. Our objective is to characterize the HI content of the XMP galaxies as a class, using as a reference the list of 140 known local XMPs compiled by Morales-Luis et al. (2011). We have observed 29 XMPs, which had not been observed before at 21 cm, using the Effelsberg radio telescope. This information was complemented with HI data published in literature for a further 53 XMPs. In addition, optical data from the literature provided morphologies, stellar masses, star-formation rates and metallicities. Effelsberg HI integrated flux densities are between 1 and 15 Jy km/s, while line widths are between 20 and 120 km/s. HI integrated flux densities and line widths from literature are in the range 0.1 - 200 Jy km/s and 15 - 150 km/s, respectively. Of the 10 new Effelsberg detections, two sources show an asymmetric double-horn profile, while the remaining sources show either asymmetric (7 sources) or symmetric (1 source) single-peak 21 cm line profiles. An asymmetry in the HI line profile is systematically accompanied by an asymmetry in the optical morphology. Typically, the g-band stellar mass-to-light ratios are ~0.1, whereas the HI gas mass-to-light ratios may be up to 2 orders of magnitude larger. Moreover, HI gas-to-stellar mass ratios fall typically between 10 and 20, denoting that XMPs are extremely gas-rich. We find an anti-correlation between the HI gas mass-to-light ratio and the luminosity, whereby fainter XMPs are more gas-rich than brighter XMPs, suggesting that brighter sources have converted a larger fraction of their HI gas into stars. The dynamical masses inferred from the HI line widths imply that the stellar mass does not exceed 5% of the dynamical mass, while the \ion{H}{i} mass constitutes between 20 and 60% of the dynamical mass. (abridged)Comment: 30 pages, accepted for A&
    corecore